Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Water Mass Transformation (WMT) theory provides conceptual tools that in principle enable innovative analyses of numerical ocean models; in practice, however, these methods can be challenging to implement and interpret, and therefore remain under‐utilized. Our aim is to demonstrate the feasibility of diagnosing all terms in the water mass budget and to exemplify their usefulness for scientific inquiry and model development by quantitatively relating water mass changes, overturning circulations, boundary fluxes, and interior mixing. We begin with a pedagogical derivation of key results of classical WMT theory. We then describe best practices for diagnosing each of the water mass budget terms from the output of Finite‐Volume Generalized Vertical Coordinate (FV‐GVC) ocean models, including the identification of a non‐negligible remainder term as the spurious numerical mixing due to advection scheme discretization errors. We illustrate key aspects of the methodology through the analysis of a polygonal region of the Greater Baltic Sea in a regional demonstration simulation using the Modular Ocean Model v6 (MOM6). We verify the convergence of our WMT diagnostics by brute‐force, comparing time‐averaged (“offline”) diagnostics on various vertical grids to timestep‐averaged (“online”) diagnostics on the native model grid. Finally, we briefly describe a stack of xarray‐enabled Python packages for evaluating WMT budgets in FV‐GVC models (culminating in the newxwmbpackage), which is intended to be model‐agnostic and available for community use and development.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Abstract Density-driven steric seawater changes are a leading-order contributor to global mean sea level rise. However, intermodel differences in the magnitude and spatial patterns of steric sea level rise exist at regional scales and often emerge during the spinup and preindustrial control integrations of climate models. Steric sea level results from an eddy-permitting climate model, GFDL CM4, are compared with a lower-resolution counterpart, GFDL-ESM4. The results from both models are examined through basin-scale heat budgets and watermass analysis, and we compare the patterns of ocean heat uptake, redistribution, and sea level differ in ocean-only [i.e., Ocean Model Intercomparison Project (OMIP)] and coupled climate configurations. After correcting for model drift, both GFDL CM4 and GFDL-ESM4 simulate nearly equivalent ocean heat content change and global sea level rise during the historical period. However, the GFDL CM4 model exhibits as much as a 40% increase in surface ocean heat uptake in the Southern Ocean and subsequent increases in horizontal export to other ocean basins after bias correction. The results suggest regional differences in the processes governing Southern Ocean heat export, such as the formation of Antarctic Intermediate Water (AAIW), Subpolar Mode Water (SPMW), and gyre transport between the two models, and that sea level changes in these models cannot be fully bias-corrected. Since the process-level differences between the two models are evident in the preindustrial control simulations of both models, these results suggest that the control simulations are important for identifying and correcting sea level–related model biases.more » « lessFree, publicly-accessible full text available December 15, 2025
-
Abstract West Antarctic Ice Sheet mass loss is a major source of uncertainty in sea level projections. The primary driver of this melting is oceanic heat from Circumpolar Deep Water originating offshore in the Antarctic Circumpolar Current. Yet, in assessing melt variability, open ocean processes have received considerably less attention than those governing cross-shelf exchange. Here, we use Lagrangian particle release experiments in an ocean model to investigate the pathways by which Circumpolar Deep Water moves toward the continental shelf across the Pacific sector of the Southern Ocean. We show that Ross Gyre expansion, linked to wind and sea ice variability, increases poleward heat transport along the gyre’s eastern limb and the relative fraction of transport toward the Amundsen Sea. Ross Gyre variability, therefore, influences oceanic heat supply toward the West Antarctic continental slope. Understanding remote controls on basal melt is necessary to predict the ice sheet response to anthropogenic forcing.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Here, we present an estimate for the ocean's global scale transfer of kinetic energy (KE), across scales from 10 to 40,000 km. Oceanic KE transfer between gyre scales and mesoscales is induced by the atmosphere’s Hadley, Ferrel, and polar cells, and the intertropical convergence zone induces an intense downscale KE transfer. Upscale transfer peaks at 300 gigawatts across mesoscales of 120 km in size, roughly one-third the energy input by winds into the oceanic general circulation. Nearly three quarters of this “cascade” occurs south of 15°S and penetrates almost the entire water column. The mesoscale cascade has a self-similar seasonal cycle with characteristic lag time of ≈27 days per octave of length scales; transfer across 50 km peaks in spring, while transfer across 500 km peaks in summer. KE of those mesoscales follows the same cycle but peaks ≈40 days after the peak cascade, suggesting that energy transferred across a scale is primarily deposited at a scale four times larger.more » « less
-
Abstract Advent of satellite altimetry brought into focus the pervasiveness of mesoscale eddies$${{{{{{{\bf{{{{{{{{\mathcal{O}}}}}}}}}}}}}}}}({100})$$ km in size, which are the ocean’s analogue of weather systems and are often regarded as the spectral peak of kinetic energy (KE). Yet, understanding of the ocean’s spatial scales has been derived mostly from Fourier analysis in small representative” regions that cannot capture the vast dynamic range at planetary scales. Here, we use a coarse-graining method to analyze scales much larger than what had been possible before. Spectra spanning over three decades of length-scales reveal the Antarctic Circumpolar Current as the spectral peak of the global extra-tropical circulation, at ≈ 104km, and a previously unobserved power-law scaling over scales larger than 103km. A smaller spectral peak exists at ≈ 300 km associated with mesoscales, which, due to their wider spread in wavenumber space, account for more than 50% of resolved surface KE globally. Seasonal cycles of length-scales exhibit a characteristic lag-time of ≈ 40 days per octave of length-scales such that in both hemispheres, KE at 102km peaks in spring while KE at 103km peaks in late summer. These results provide a new window for understanding the multiscale oceanic circulation within Earth’s climate system, including the largest planetary scales.more » « less
-
null (Ed.)Abstract This study investigates the occurrence of the Weddell Sea polynya under an idealized climate change scenario by evaluating simulations from climate models of different ocean resolutions. The GFDL-CM2.6 climate model, with roughly 3.8-km horizontal ocean grid spacing in the high latitudes, forms a Weddell Sea polynya at similar time and duration under idealized climate change forcing as under preindustrial forcing. In contrast, all convective models forming phase 5 of the Coupled Model Intercomparison Project (CMIP5) show either a cessation or a slowdown of Weddell Sea polynya events under climate warming. The representation of the Antarctic Slope Current and related Antarctic Slope Front is found to be key in explaining the differences between the two categories of models, with these features being more realistic in CM2.6 than in CMIP5. In CM2.6, the freshwater input driven by sea ice melt and enhanced runoff found under climate warming largely remains on the shelf region since the slope front restricts the lateral spread of the freshwater. In contrast, for most CMIP5 models, open-ocean stratification is enhanced by freshening since the absence of a slope front allows coastal freshwater anomalies to spread into the open ocean. This enhanced freshening contributes to the slowdown the occurrence of Weddell Sea polynyas. Hence, an improved representation of Weddell Sea shelf processes in current climate models is desirable to increase our ability to predict the fate of the Weddell Sea polynyas under climate change.more » « less
-
Abstract. We describe an idealized primitive-equation model for studying mesoscale turbulence and leverage a hierarchy of grid resolutions to make eddy-resolving calculations on the finest grids more affordable.The model has intermediate complexity, incorporating basin-scale geometry with idealized Atlantic and Southern oceans and with non-uniform ocean depth to allow for mesoscale eddy interactions with topography.The model is perfectly adiabatic and spans the Equator and thus fills a gap between quasi-geostrophic models, which cannot span two hemispheres, and idealized general circulation models, which generally include diabatic processes and buoyancy forcing.We show that the model solution is approaching convergence in mean kinetic energy for the ocean mesoscale processes of interest and has a rich range of dynamics with circulation features that emerge only due to resolving mesoscale turbulence.more » « less
-
Abstract High-frequency precipitation variance is calculated in 12 different free-running (non-data-assimilative) coupled high resolution atmosphere–ocean model simulations, an assimilative coupled atmosphere–ocean weather forecast model, and an assimilative reanalysis. The results are compared with results from satellite estimates of precipitation and rain gauge observations. An analysis of irregular sub-daily fluctuations, which was applied by Covey et al. (Geophys Res Lett 45:12514–12522, 2018.https://doi.org/10.1029/2018GL078926) to satellite products and low-resolution climate models, is applied here to rain gauges and higher-resolution models. In contrast to lower-resolution climate simulations, which Covey et al. (2018) found to be lacking with respect to variance in irregular sub-daily fluctuations, the highest-resolution simulations examined here display an irregular sub-daily fluctuation variance that lies closer to that found in satellite products. Most of the simulations used here cannot be analyzed via the Covey et al. (2018) technique, because they do not output precipitation at sub-daily intervals. Thus the remainder of the paper focuses on frequency power spectral density of precipitation and on cumulative distribution functions over time scales (2–100 days) that are still relatively “high-frequency” in the context of climate modeling. Refined atmospheric or oceanic model grid spacing is generally found to increase high-frequency precipitation variance in simulations, approaching the values derived from observations. Mesoscale-eddy-rich ocean simulations significantly increase precipitation variance only when the atmosphere grid spacing is sufficiently fine (< 0.5°). Despite the improvements noted above, all of the simulations examined here suffer from the “drizzle effect”, in which precipitation is not temporally intermittent to the extent found in observations.more » « less
-
Abstract There are two distinct parameterizations for the restratification effect of mesoscale eddies: the Greatbatch and Lamb (1990, GL90,https://journals.ametsoc.org/view/journals/phoc/20/10/1520-0485_1990_020_1634_opvmom_2_0_co_2.xml?tab_body=abstract-display) parameterization, which mixes horizontal momentum in the vertical, and the Gent and McWilliams (1990, GM90,https://journals.ametsoc.org/view/journals/phoc/20/1/1520-0485_1990_020_0150_imiocm_2_0_co_2.xml) parameterization, which flattens isopycnals adiabatically. Even though these two parameterizations are effectively equivalent under the assumption of quasi‐geostrophy, GL90 has been used much less than GM90, and exclusively inz‐coordinate models. In this paper, we compare the GL90 and GM90 parameterizations in an idealized isopycnal coordinate model, both from a theoretical and practical perspective. From a theoretical perspective, GL90 is more attractive than GM90 for isopycnal coordinate models because GL90 provides an interpretation that is fully consistent with thickness‐weighted isopycnal averaging, while GM90 cannot be entirely reconciled with any fully isopycnal averaging framework. From a practical perspective, the GL90 and GM90 parameterizations lead to extremely similar energy levels, flow and vertical structure, even though their energetic pathways are very different. The striking resemblance between the GL90 and GM90 simulations persists from non‐eddying through eddy‐permitting resolution. We conclude that GL90 is a promising alternative to GM90 for isopycnal coordinate models, where it is more consistent with theory, computationally more efficient, easier to implement, and numerically more stable. Assessing the applicability of GL90 in realistic global ocean simulations with hybrid coordinate schemes should be a priority for future work.more » « less
An official website of the United States government
